Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment
نویسندگان
چکیده
This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.
منابع مشابه
Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems
Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues from the land can have negative impacts on soil health. Because of this computational tools are needed that can help guide decisions on the amount of agricultural residue that can be sustainably removed. Models and datasets that can support decisions about sustainable agricultur...
متن کاملIntegration of the DAYCENT Biogeochemical Model within a Multi-Model Framework
Agricultural residues are the largest near term source of cellulosic biomass for bioenergy production, but removing agricultural residues sustainably requires considering the critical roles that residues play in the agronomic system. Determination of sustainable removal rates for agricultural residues has received significant attention and integrated modeling strategies have been built to evalu...
متن کاملA Computational Strategy for Design and Implementation of Equipment That Addresses Sustainable Agricultural Residue Removal at the Subfield Scale
Agricultural residues are the largest potential near term source of biomass for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in maintaining soil health and productivity. Innovation equipment designs for residue harvesting systems can help economically collect agricultural residues while mi...
متن کاملA conceptual evaluation of sustainable variable-rate agricultural residue removal.
Agricultural residues have near-term potential as a feedstock for bioenergy production, but their removal must be managed carefully to maintain soil health and productivity. Recent studies have shown that subfield scale variability in soil properties (e.g., slope, texture, and organic matter content) that affect grain yield significantly affect the amount of residue that can be sustainably remo...
متن کاملSimulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production
Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue remova...
متن کامل